skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sadykov, V M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 14, 2026
  2. ABSTRACT Understanding the effects driven by rotation in the solar convection zone is essential for many problems related to solar activity, such as the formation of differential rotation, meridional circulation, and others. We analyse realistic 3D radiative hydrodynamics simulations of solar subsurface dynamics in the presence of rotation in a local domain 80 Mm wide and 25 Mm deep, located at 30° latitude. The simulation results reveal the development of a shallow 10 Mm deep substructure of the near-surface shear layer (NSSL), characterized by a strong radial rotational gradient and self-organized meridional flows. This shallow layer (‘leptocline’) is located in the hydrogen ionization zone associated with enhanced anisotropic overshooting-type flows into a less unstable layer between the H and He ii ionization zones. We discuss current observational evidence of the presence of the leptocline and show that the radial variations of the differential rotation and meridional flow profiles obtained from the simulations in this layer qualitatively agree with helioseismic observations. 
    more » « less